A N
VFF
CONE

oY
A y)
2024 ~cs 3
B o REE
. a x
'ﬂ

Binary Software Composition

Analysis in Action: Finding .’
vulnerable native libraries E
in Android Apps

Founder DAP Solutions

«] @spb_zhuk

Whoami N

VFF
W {ONE

2024

Security Researcher

« 13+ years in CyberSecurity

« Founder of DAP Solutions (Pentest & AppSec Team)
« 10+ years in Security Teaching in University

« PhD, Associate Professor at the Peter the Great
St.Petersburg Polytechnic University

Software composition analysis (SCA) {ERE

2024

OWASP DevSecOps Guideline

Secrt?t SCA SAST IaC. Contai.ner DAST Infra}
Scanning Scanning Scanning Scanning ec a

Source: https://owasp.org/www-project-devsecops-guideline/

Software composition analysis (SCA) is an important step in
SSDLC/DevSecOps practices that involves the automated process of

identifying third-party components, such as open source software, in a
codebase and tracking known vulnerabilities in them.

Limitations and Disadvantages of SCA

 Relies on information from package managers
and build tools

 Uses only hashes to analyze binary dependencies
 Does not detect dependencies in static link binaries

« Does not detect v3' party components manually
added to the project on source code level

AN N
VFF
{ONE

2024

Binary Software Composition Analysis 5.

2024

Binary Software Composition Analysis allows you to determine
the composition of software based on the analysis of executable files

« Detection of transitive dependencies and implicit dependencies (added manually)
 Does not require lengthy and complex setup and integration with development tools

« Does not require source code and can work based on analysis of binaries delivered
to customers

« Can be used as a last mile check before delivery and detect vulnerabilities/backdoors
iIntroduced during the build process.

« Can be outsourced for external product analysis

BSCA domains of knowledge AR
and challenges

-

BlackBox BugHunting

Use BSCA for Android Native libs

Targets:
APK of Russian mobile

application from Bug Bounty
platform (> 10)

[CVE-XXXX-XX

| CVE-XXXX-XX

| CVE-XXXX-XX

| CVE-XXXX-XX

third-party
dependencies

func_1: 0x12345678

CVE-XXXX-XX func_4: 0x33345678

| CVE-XXXX-XX —_func_6: 0x22345678

T EVE-XXXX-xx — func_5: 0x16346678
CVE-XXXX-XX — func_7: 0x34345678

func_0: 0x58345678

T EVE-XXXX-XX — func_2: 0x16346678

CVE-YXOO(X-XX func_3: 0x34345678
func_4: 0x33345678

T CVE-XXXX-XX— func_8: 0x89346678

CVE-XXXX-XX— func_9: 0x11345678
func_7: 0x34345678

vulns list vulns
localization

ONE

2024

o
veSishs s
S¢¢ S, 9- I

od | 1593

BSCA phases

Vulnerability Data collection

Collect vulnerability Found information
lists and basic info about vulnerability fix
(fix commit)

Detecting vulnerable components

Third-party Version / Commit Potential

component detection Vulnerability
detection code localization
libpng X.X.X commit address / none

Code fix
detection

yes/no

VFF
{ONE

2024

)/

L]

Verdict

BSCA: Data collection

Parsed
Source
code

[4

= -

Parsed
Executable
files

Parsed

Defect
information

Source
code

p

Executable
files

p

Defect
information

-

el e e .

Sources

Vulnerability
information
Sources

Search known vulnerabilities EF e
for libraries

CVE Databases. not effective, only common info Useful sources of CVE info:

« Official Site: vulns description, sometimes information
about fix commits, and developer s comments about
ability real exploitation

« Official repository - fix commmit info and description
and sometimes PoCs

 Bug Tracker System: a full information about errors,
sometimes PoCs or fuzzer ™ s testcase for reproduce,
ASAN logs, stacktrace logs

10

https://vulnerabilityhistory.org/
https://vulnerabilityhistory.org/
https://ossindex.sonatype.org/
https://fossa.com/
https://github.com/dependabot
https://snyk.io/

FF
ONE

2024

NO

Secadrch interesting errors in repository
issues

Code

Searching in issues:

- CVE
* vulnerability

.]
i S e C u r I ty) Crashpad crash collection is not (hread—safe backend: crashpad @
Platform: Windows

. . .
[] r I t I a | I O rt a t nproc: backtrace() on recent macOS no longer produces a stack-trace in the swgnalfhandler backend: inproc
C Cal, Im N O CTETD CITTTD

lo rind

) deadlock in sentry__bgworker_submit and worker_thread m Platform: Windows:
& 2 e 3 tasks

entry Native Android SDK Crashing - sentry__string_eq Unhandled Segfau\tm cutdated

« exploit

« overflow: heap overflow, buffer T ——
overflow, integer overflow, s
overrun, override

 |eak

n

CVE vs Silent Vulnerability Fix

DevSecOps tracks CVEs, but why does fixing code without CVEs
or issues not attract attention? Are you sure it is less dangerous?

« all the attention on CVE
« CVEs are registered more on the initiative of external researchers

« most code fixes are made by developers, and they are not motivated
to register CVEs and analyze the impact of changes on security
for own code changes

« old commits are not covered by fuzzing
 thereis no database of Silent Vulnherability Fixes

VFF
{ONE

2024

Searching Security Commits using LLM SEF_

2024

Large Language Model helps automate analysis of potential security
Impact of patches

using filtering by files
and functions

—
—C—

Using LLM results in a large number ' '
of false positives (more complex @

algorithm is needed)

13

Detecting Third-Party Components: Basics SEF_

2024

 can be name of component and version strings
 in Copyright

* In build artefacts (paths)

« inerror/logs strings

« detection by name of functions from third-party library

« can detect version (know which functions in which
versions were appear/disappear)

14

Detecting version based on string: bad idea SEF_

2024
Easy detection in this case: Binary of library contains the library name
with version number

But is it correct?

libavcodec-56

Determining the presence

of a vulnerability based on the
version results in a large
number of false positives

' B10 2811 2812 2813 2814

(from 2016 was register > 150 CVEs)

15

Approaches to detecting third-party VFF

components in binary code

 Signhatures

 Binary functions signatures

« Comparing code graph representation
« Assembly instruction's statistics

« Languages models based on decompiled /
assembly code

« Machine learning on binaries

« Symbolic executions constraints
for functions

{ONE

2024

IDA Pro FLIRT, Lumina/
Ghidra FID

Bindiff / Diaphora
pigaious

BinaryAl Service

16

Functions and Commit detection based on SEF
literals matching

-T-

——
= -

Functions literals
matching

Tasks:

. Functions localization

. Commits detection

17

Function matching based on literals

Used combinations of the following metrics when comparing:

1
« literal unigueness metric: occurrence frequency (l)

lelL

: ~ =)
e Jaccard metric K; = A B) .

VFF
{ONE

2024

18

Function matching based on literals: Results {EF_

2024

Results for libflac

Taking filel and search
similar functions in file2
based on comparing
literals

Sort functions from file2
and analyzing position of
equal function in ranking

4]
a
-
[¥]
a—
=
[
o
b
a
0
=

Results shows that the
most functions were
matched correctly based
on comparing literals

4-10 51-100 101-400
Position

19

Version & commit detection SEF

2024

Search in binary files commit
signatures based on
string and numeric literals

20

Results of analysis using BSCA for native
Libs

> 50 CVE in 8 OSS components
(most of them are in the ffmpeg)

o
-

~30 CVE for checking Manual Check

VFF
{ONE

2024

21

Results of BSCA for FFmpeg libraries JEF

2024

Found several APK that use FFmpeg with version strings: 2.8.8 and 2.8.9

Functions in which the following vulnerabilities are known were |localized:

Let's start manual analysis...

CVE-2018-14394
CVE-2020-22016
CVE-2020-22037
CVE-2022-48434

Based on the versions, there will
be potentially ~150 CVEs exposed

Based on commits detection was
founded ~30 CVEs

~10 CVEs for manual checking

22

CVE-2018-12459:

Decompiled target code

Found code fix

Fix commit code

NO

FF
ONE

2024

23

CVE-2018-12460:

Decompiled target code

Fix commit code

NO

FF
ONE

2024

24

CVE-2018-14394:

Decompiled target code

FF
ONE

2024

NO

AV_CODEC_ID_ADPCM_IMA_WAY = 69633;
AV_CODEC_ID_AMR_NB = 73728; __, .
Fix commit code

input

input pa ntains no

25

CVE-2020-22016: BoF - ©

Decompiled target code Fix commit code

les_in_chunk

_in_chunk

[} l= B42000041
88 [v3? & OxFEFBFFFF) != 1882286433
T l= 100
24 1= 1gsz39TIZL
T l= 2021826145
88 {({({v33 & BFFFBFFFF) - B92830689) & Ox

JINPUT_BUFFER_PADDING_SIZIE);

3 + 188)):

memset is missi

Checking the reachability of vulnerable JEF
code from APK

Use Android Emulator (ARM) for running and debugging application

Use Frida for analysis loaded native libraries and functions tracing
Analyzing decompiled code of APK with JADX and JEB

It Is difficult for full automatization

You need to understand app logic and its use cases
to trigger vulnerable code

27

liIbFLAC: CVE-2020-0499 -

Decompiled target code

check is missing

Fix commit code

with no v

NO

FF
ONE

2024

28

FF
ONE

2024

NO

liIbFLAC: CVE-2021-0561 -

Decompiled target code Fix commit code

check is missing

PAS)

What was found after manual check SEF

2024

Only half of all potential CVE found have been manually checked so far.

Vulherable code from the following native libraries was found to be
used:

* FFmpeg: CVE-2018-14394, CVE-2020-22016
« Giflib: CVE-2019-15133
« FLAC: CVE-2020-0499, CVE-2021-056]

What other interesting things can we find in binary files...

30

They said: DevSecOps,
Cl1/CD Pipelines ..sure? ©

We expect that big vendors use
SSDLC and CI/CD Pipeline:

We analyze binaries artefacts and see...

Expectation

\VP

‘ =)

VFF
{ONE

2024

v

Actlons

2.0

3]

. VFF
They said: DevSecOps, ONE
]] 9 2024
Cl/CD Pipelines ..sure? ©
Reality ﬁ
We analyze binaries artefacts and see: G’ a\Neo
<I> A
Developer ? App Lﬁ'f;r)s
Build libs Markets
aivanov -
/home/ /Projects/ /android-cloud-sdk/sdk-lib/cloud-sdk/api/src/node_repository/FlatNodeCursor.cpp
--prefix=/Users/ /Development/Projects/Android/ /media/jni/Tools/ffmpeg/android/arm64-v8a --arch=armé4 --

cc=/Users/ivan/Development/SDKs/android-ndk-r15c/toolchains/aarch64-linux-android-4.9/prebuilt/darwin-x86_64/bin/aarch64-linux-android-gcc --pkg-
config=/usr/local/bin/pkg-config --enable-gpl --enable-version3 --enable-shared --disable-static --disable-debug --disable-programs --disable-doc --
disable-avdevice --disable-swresample --disable-avfilter --disable-everything --enable-libx264 --enable-encoder=libx264 --enable-decoder=mpeg4 --
enhable-decoder=h264 --enable-demuxer=h264 --enable-demuxer=rtp --enable-muxer=mp4 --enable-parser=h264 --enable-parser=-mpeg4video --enable-
protocol=file --disable-symver --enable-memalign-hack --enable-asm --cross-prefix=/Users/ /Development/SDKs/android-ndk-r15c/toolchains/aarch64-
linux-android-4.9/prebuilt/darwin-x86_64/bin/aarch64-linux-android- --target-os=linux --enablessross-compile --

sysroot=/Users/ /Development/SDKs/android-ndk-r15¢/p

- was changed from real for privacy

It doesn't look like it was built in CI\CD Pipelines © Looks like a build on a developer workstation

32

Results: How to make your native libs of (&f.
Android Apps more secure?

Conduct bug bounties

Monitor known vulnerabilities (classical SCA) and bugs/issues,

check PoCs for your dependencies. Analyze Silent Vulnerability
Fixes

Update your vulnerable native libs
Fuzzing your libraries and your dependencies

Delete service info (build artefacts) from binary files (last name
of your developers and build paths)

33

Next Steps EFe

2024

Improve commit detection approach (not only using literals),
use deeper analysis to detect functions with CVE

Automation to detect CVE fix in functions
Publish the implemented BSCA system as a web service

Continue searching for Silent Vulnerability Fix using LLM with
iInformation from Data-Flow Analysis

Detect versions of packages from APK (Fresco, exoplayer?, ..)
Try to automate PoC generation using selective function fuzzing

|l am open to any help and ideas

34

FF
ONE

NGO

z .~
- -
= “ »
g i N
" e - ., :
: .
T H .
B’ ol
i ‘s N 3
- n-n"_ —
E VoW
% a
- - " o~
. ~ <
Lo % . g
Iy . ~)
,",.n'= - ~
.
smr - - «
L] -« o & =
: N -
» X <
Ve e
oy
’ [# | ~
o o«
(N

| |
7z "’

J
e
S LT .

Founder DAP Solutions

<*] @spb_zhuk

