
@spb_zhuk

Evgeny Zhukovsky
Founder DAP Solutions

Binary Software Composition
Analysis in Action: Finding
vulnerable native libraries
in Android Apps

Whoami

• Security Researcher

• 13+ years in CyberSecurity

• Founder of DAP Solutions (Pentest & AppSec Team)

• 10+ years in Security Teaching in University

• PhD, Associate Professor at the Peter the Great
St.Petersburg Polytechnic University

2

Software composition analysis (SCA) is an important step in
SSDLC/DevSecOps practices that involves the automated process of
identifying third-party components, such as open source software, in a
codebase and tracking known vulnerabilities in them.

Software composition analysis (SCA)

OWASP DevSecOps Guideline

Source: https://owasp.org/www-project-devsecops-guideline/

3

• Relies on information from package managers
and build tools

• Uses only hashes to analyze binary dependencies

• Does not detect dependencies in static link binaries

• Does not detect v3rd party components manually
added to the project on source code level

Limitations and Disadvantages of SCA

4

Binary Software Composition Analysis

Advantages of BSCA:

• Detection of transitive dependencies and implicit dependencies (added manually)

• Does not require lengthy and complex setup and integration with development tools

• Does not require source code and can work based on analysis of binaries delivered
to customers

• Can be used as a last mile check before delivery and detect vulnerabilities/backdoors
introduced during the build process.

• Can be outsourced for external product analysis

Binary Software Composition Analysis allows you to determine
the composition of software based on the analysis of executable files

5

BSCA domains of knowledge
and challenges

Software
Composition

Analysis
(SCA)

Binary
similarity

Source-
to-Binary
similarity

Software
Bill of

Materials
(SBOM)

Security
Commit

Detection

Extract
information

from CVE

Static
library

detection

Binary
Software

Composition
Analysis
(BSCA)

DevSecOps

BlackBox BugHunting

6

Use BSCA for Android Native libs

APK

.so

.so

libgif

libopus

libpng

libjpeg

…

…

…

CVE-XXXX-XX
CVE-XXXX-XX
CVE-XXXX-XX

CVE-XXXX-XX
CVE-XXXX-XX
CVE-XXXX-XX

CVE-XXXX-XX
CVE-XXXX-XX
CVE-XXXX-XX

CVE-XXXX-XX
CVE-XXXX-XX
CVE-XXXX-XX

func_1: 0x12345678
…

func_4: 0x33345678

func_6: 0x22345678

func_5: 0x16346678

func_0: 0x58345678

func_7: 0x34345678

func_2: 0x16346678

func_4: 0x33345678

func_3: 0x34345678

func_8: 0x89346678

func_7: 0x34345678

func_9: 0x11345678

third-party
dependencies

vulns list vulns
localization

Targets:
APK of Russian mobile
application from Bug Bounty
platform (> 10)

7

BSCA phases

Collect vulnerability
lists and basic info

Vulnerability Data collection

Found information
about vulnerability fix

(fix commit)

Third-party
component

detection

Version / Commit
detection

Potential
Vulnerability

code localization

Verdict

Code fix
detection

libpng x.x.x commit address / none yes / no

Detecting vulnerable components

8

BSCA: Data collection

Source
Code

Database

OSS Source code
Sources

Github

Gitlab

Bitbucket

SourceForge

…

Vulnerability
information

Sources

NVD CVE

SonarCloud
SVCP4C

Sonatype
OSS Index

CISA Known Exploited
Vulnerabilities Catalog

…
OSV.DEV

Binary Collector

Internet
Crawler

Repository
Analyzer

Code
Builder

Source
code

Executable
files

Defect
Information
Aggregator

Type
Classification

Description
Analyzer

File & Function
Name Extractor

Defect
information

Parsed
Executable

files

Parsed
Defect

information
Vuln Versions &
Patch Searcher

Code
Repository

Executable
File Names

Source File
Names

Functions
Names

Source Collector

Parsed
Source
code

9

Search known vulnerabilities
for libraries

• CVE Databases: not effective, only common info

• Official Site: vulns description, sometimes information
about fix commits, and developer`s comments about
ability real exploitation

• Official repository – fix commit info and description
and sometimes PoCs

• Bug Tracker System: a full information about errors,
sometimes PoCs or fuzzer`s testcase for reproduce,
ASAN logs, stacktrace logs

Useful sources of CVE info:

• https://vulnerabilityhistory.org

• https://osv.dev/

• https://ossindex.sonatype.org/

• https://fossa.com/

• https://github.com/dependabot

• https://snyk.io/

…

10

https://vulnerabilityhistory.org/
https://vulnerabilityhistory.org/
https://ossindex.sonatype.org/
https://fossa.com/
https://github.com/dependabot
https://snyk.io/

Search interesting errors in repository
issues

Searching in issues:
• CVE
• vulnerability
• security
• critical, important
• exploit
• overflow: heap overflow, buffer

overflow, integer overflow,
overrun, override

• leak

11

CVE vs Silent Vulnerability Fix

DevSecOps tracks CVEs, but why does fixing code without CVEs
or issues not attract attention? Are you sure it is less dangerous?

Silent Vulnerability Fix relevance factors:
• all the attention on CVE

• CVEs are registered more on the initiative of external researchers

• most code fixes are made by developers, and they are not motivated
to register CVEs and analyze the impact of changes on security
for own code changes

• old commits are not covered by fuzzing

• there is no database of Silent Vulnerability Fixes

12

Searching Security Commits using LLM

Large Language Model helps automate analysis of potential security
impact of patches

All Commits

Reachable
Commits

LLM

using filtering by files
and functions

Vulnerability Fix
(potential)

Using LLM results in a large number
of false positives (more complex
algorithm is needed)

13

Detecting Third-Party Components: Basics

Analyze strings and search name of components
and version:
• can be name of component and version strings
• in Copyright
• in build artefacts (paths)
• in error / logs strings
• detection by name of functions from third-party library

List of functions:

• can detect version (know which functions in which
versions were appear/disappear)

14

Detecting version based on string: bad idea

libavcodec-56

Easy detection in this case: Binary of library contains the library name
with version number

Ffmpeg 2.8.9 versionFFmpeg version 2.8.8

These versions can be affected by many vulnerabilities (from 2016 was register > 150 CVEs)

The Version 2.8.8 is dated 2016-09-19, but in reality it is more updated versions
Determining the presence
of a vulnerability based on the
version results in a large
number of false positives

But is it correct?

15

Approaches to detecting third-party
components in binary code

Popular approaches:
• Signatures

• Binary functions signatures

• Comparing code graph representation

• Assembly instruction's statistics

• Languages models based on decompiled /
assembly code

• Machine learning on binaries

• Symbolic executions constraints
for functions

Tools:
• IDA Pro FLIRT, Lumina/

Ghidra FID

• Bindiff / Diaphora

• pigaious

• BinaryAI Service

• …

16

Functions and Commit detection based on
literals matching

17

Functions literals
matching

Functions localization

Commits detection

Tasks:

…

Function matching based on literals

Used combinations of the following metrics when comparing:

• literal uniqueness metric:

• Jaccard metric KJ = A B
Intersection (A, B)

Union (A, B)

1

occurrence frequency (l)
l ∈ L

18

Function matching based on literals: Results

Results for libflac

Results shows that the
most functions were
matched correctly based
on comparing literals

Taking file1 and search
similar functions in file2
based on comparing
literals

Sort functions from file2
and analyzing position of
equal function in ranking

19

Version & commit detection

commit1 commit2 commit3 commit4

com2_sign com3_sign com4_sign

Target
Binary

commit5

com5_signcom1_sign comN_sign

commitN…

…

Search in binary files commit
signatures based on
string and numeric literals

20

Results of analysis using BSCA for native
Libs

> 50 CVE in 8 OSS components
(most of them are in the ffmpeg)

Vuln
Type

Reachability CVSS

~30 CVE for checking Manual Check

21

Results of BSCA for FFmpeg libraries

Found several APK that use FFmpeg with version strings: 2.8.8 and 2.8.9

Functions in which the following vulnerabilities are known were localized:

• CVE-2018-14394

• CVE-2020-22016

• CVE-2020-22037

• CVE-2022-48434

• …

Let's start manual analysis…

Based on the versions, there will
be potentially ~150 CVEs exposed

~10 CVEs for manual checking

Based on commits detection was
founded ~30 CVEs

22

CVE-2018-12459: fixed

Fix commit codeDecompiled target code

Found code fix

23

CVE-2018-12460: functionality is missing

Decompiled target code

Missing codec
mode code that

is vulnerable

Fix commit code

24

CVE-2018-14394: vulnerable☺

AV_CODEC_ID_ADPCM_IMA_WAV = 69633;
AV_CODEC_ID_AMR_NB = 73728;

Fix commit code

Decompiled target code

73728

69633

check is missing

25

Fix commit codeDecompiled target code

memset is missing

error in memory allocation

26

CVE-2020-22016: BoF - vulnerable☺

Checking the reachability of vulnerable
code from APK

• Use Android Emulator (ARM) for running and debugging application

• Use Frida for analysis loaded native libraries and functions tracing

• Analyzing decompiled code of APK with JADX and JEB

• It is difficult for full automatization

• You need to understand app logic and its use cases
to trigger vulnerable code

27

libFLAC: CVE-2020-0499 – vulnerable☺

Fix commit code

Decompiled target code

check is missing

28

libFLAC: CVE-2021-0561 – vulnerable☺

check is missing

Fix commit codeDecompiled target code

29

Only half of all potential CVE found have been manually checked so far.

Vulnerable code from the following native libraries was found to be
used:

• FFmpeg: CVE-2018-14394, CVE-2020-22016

• Giflib: CVE-2019-15133

• FLAC: CVE-2020-0499, CVE-2021-0561

What other interesting things can we find in binary files…

What was found after manual check

30

They said: DevSecOps,
CI/CD Pipelines …sure? ☺

We analyze binaries artefacts and see…

We expect that big vendors use
SSDLC and CI/CD Pipeline:

Actions

Expectation

31

They said: DevSecOps,
CI/CD Pipelines …sure? ☺

It doesn't look like it was built in CI\CD Pipelines ☺ Looks like a build on a developer workstation

We analyze binaries artefacts and see:

Reality

Developer
Build libs

? App
Markets

App
Users

MacOS?! This is hardly a CI/CD pipeline* - was changed from real for privacy

32

aivanov –

Results: How to make your native libs of
Android Apps more secure?

1. Conduct bug bounties

2. Monitor known vulnerabilities (classical SCA) and bugs/issues,
check PoCs for your dependencies. Analyze Silent Vulnerability
Fixes

3. Update your vulnerable native libs

4. Fuzzing your libraries and your dependencies

5. Delete service info (build artefacts) from binary files (last name
of your developers and build paths)

33

Next Steps

• Improve commit detection approach (not only using literals),
use deeper analysis to detect functions with CVE

• Automation to detect CVE fix in functions

• Publish the implemented BSCA system as a web service

• Continue searching for Silent Vulnerability Fix using LLM with
information from Data-Flow Analysis

• Detect versions of packages from APK (Fresco, exoplayer2, ..)

• Try to automate PoC generation using selective function fuzzing

I am open to any help and ideas

34

Q&A
Evgeny Zhukovsky
Founder DAP Solutions

@spb_zhuk

