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• 10+ years in Security Teaching in University

• PhD, Associate Professor at the Peter the Great 
St.Petersburg Polytechnic University
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Software composition analysis (SCA) is an important step in 
SSDLC/DevSecOps practices that involves the automated process of 
identifying third-party components, such as open source software, in a 
codebase and tracking known vulnerabilities in them.

Software composition analysis (SCA)

OWASP DevSecOps Guideline

Source: https://owasp.org/www-project-devsecops-guideline/
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• Relies on information from package managers 
and build tools

• Uses only hashes to analyze binary dependencies

• Does not detect dependencies in static link binaries

• Does not detect v3rd party components manually 
added to the project on source code level

Limitations and Disadvantages of SCA
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Binary Software Composition Analysis

Advantages of BSCA: 

• Detection of transitive dependencies and implicit dependencies (added manually) 

• Does not require lengthy and complex setup and integration with development tools 

• Does not require source code and can work based on analysis of binaries delivered 
to customers 

• Can be used as a last mile check before delivery and detect vulnerabilities/backdoors 
introduced during the build process.

• Can be outsourced for external product analysis

Binary Software Composition Analysis allows you to determine 
the composition of software based on the analysis of executable files
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BSCA domains of knowledge
and challenges
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Use BSCA for Android Native libs

APK

.so

.so
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Targets:
APK of Russian mobile 
application from Bug Bounty 
platform (> 10)
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BSCA phases
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libpng x.x.x commit address / none yes / no

Detecting vulnerable components
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BSCA: Data collection
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Search known vulnerabilities 
for libraries

• CVE Databases:   not effective, only common info

• Official Site: vulns description, sometimes information 
about fix commits, and developer`s comments about 
ability real exploitation

• Official repository – fix commit info and description 
and sometimes PoCs

• Bug Tracker System: a full information about errors, 
sometimes PoCs or fuzzer`s testcase for reproduce, 
ASAN logs, stacktrace logs

Useful sources of CVE info:

• https://vulnerabilityhistory.org

• https://osv.dev/

• https://ossindex.sonatype.org/

• https://fossa.com/

• https://github.com/dependabot

• https://snyk.io/

…
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Search interesting errors in repository 
issues

Searching in issues:
• CVE
• vulnerability
• security
• critical, important
• exploit
• overflow: heap overflow, buffer 

overflow, integer overflow, 
overrun, override

• leak

11



CVE vs Silent Vulnerability Fix

DevSecOps tracks CVEs, but why does fixing code without CVEs 
or issues not attract attention? Are you sure it is less dangerous?

Silent Vulnerability Fix relevance factors:
• all the attention on CVE

• CVEs are registered more on the initiative of external researchers

• most code fixes are made by developers, and they are not motivated 
to register CVEs and analyze the impact of changes on security 
for own code changes

• old commits are not covered by fuzzing

• there is no database of Silent Vulnerability Fixes 
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Searching Security Commits using LLM

Large Language Model helps automate analysis of potential security 
impact of patches

All Commits

Reachable 
Commits

LLM

using filtering by files 
and functions

Vulnerability Fix 
(potential)

Using LLM results in a large number 
of false positives (more complex 
algorithm is needed)
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Detecting Third-Party Components: Basics

Analyze strings and search name of components 
and version:
• can be name of component and version strings
• in Copyright
• in build artefacts (paths)
• in error / logs strings
• detection by name of functions from third-party library

List of functions:

• can detect version (know which functions in which 
versions were appear/disappear)
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Detecting version based on string: bad idea

libavcodec-56

Easy detection in this case: Binary of library contains the library name 
with version number

Ffmpeg 2.8.9 versionFFmpeg version 2.8.8

These versions can be affected by many vulnerabilities (from 2016 was register > 150 CVEs)

The Version 2.8.8 is dated 2016-09-19, but in reality it is more updated versions
Determining the presence 
of a vulnerability based on the 
version results in a large 
number of false positives

But is it correct?
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Approaches to detecting third-party 
components in binary code

Popular approaches:
• Signatures

• Binary functions signatures

• Comparing code graph representation

• Assembly instruction's statistics

• Languages models based on decompiled /
assembly code

• Machine learning on binaries

• Symbolic executions constraints 
for functions

Tools:
• IDA Pro FLIRT, Lumina/ 

Ghidra FID

• Bindiff / Diaphora

• pigaious

• BinaryAI Service

• …
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Functions and Commit detection based on 
literals matching

17

Functions literals 
matching

Functions localization

Commits detection

Tasks:

…



Function matching based on literals

Used combinations of the following metrics when comparing:

• literal uniqueness metric:

• Jaccard metric KJ = A B
Intersection (A, B)

Union (A, B)

1

occurrence frequency (l)
l ∈ L
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Function matching based on literals: Results

Results for libflac

Results shows that the 
most functions were 
matched correctly based 
on comparing literals

Taking file1 and search 
similar functions in file2 
based on comparing 
literals

Sort functions from file2 
and analyzing position of 
equal function in ranking
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Version & commit detection

commit1 commit2 commit3 commit4

com2_sign com3_sign com4_sign

Target
Binary

commit5

com5_signcom1_sign comN_sign

commitN…

…

Search in binary files commit 
signatures based on 
string and numeric literals

20



Results of analysis using BSCA for native 
Libs

> 50 CVE in 8 OSS components
(most of them are in the ffmpeg)

Vuln 
Type

Reachability CVSS

~30 CVE for checking Manual Check
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Results of BSCA for FFmpeg libraries

Found several APK that use FFmpeg with version strings: 2.8.8 and 2.8.9

Functions in which the following vulnerabilities are known were localized:

• CVE-2018-14394 

• CVE-2020-22016

• CVE-2020-22037

• CVE-2022-48434

• …

Let's start manual analysis…

Based on the versions, there will 
be potentially ~150 CVEs exposed

~10 CVEs for manual checking

Based on commits detection was 
founded ~30 CVEs
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CVE-2018-12459: fixed

Fix commit codeDecompiled target code 

Found code fix
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CVE-2018-12460: functionality is missing 

Decompiled target code 

Missing codec 
mode code that 

is vulnerable

Fix commit code

24



CVE-2018-14394: vulnerable☺

AV_CODEC_ID_ADPCM_IMA_WAV = 69633;
AV_CODEC_ID_AMR_NB = 73728;

Fix commit code

Decompiled target code 

73728

69633

check is missing 
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Fix commit codeDecompiled target code 

memset is missing 

error in memory allocation
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Checking the reachability of vulnerable 
code from APK

• Use Android Emulator (ARM) for running and debugging application

• Use Frida for analysis loaded native libraries and functions tracing 

• Analyzing decompiled code of APK with JADX and JEB

• It is difficult for full automatization

• You need to understand app logic and its use cases 
to trigger vulnerable code
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libFLAC: CVE-2020-0499 – vulnerable☺

Fix commit code

Decompiled target code 

check is missing 
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libFLAC: CVE-2021-0561 – vulnerable☺

check is missing 

Fix commit codeDecompiled target code 
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Only half of all potential CVE found have been manually checked so far.

Vulnerable code from the following native libraries was found to be 
used: 

• FFmpeg: CVE-2018-14394, CVE-2020-22016 

• Giflib: CVE-2019-15133

• FLAC: CVE-2020-0499, CVE-2021-0561

What other interesting things can we find in binary files…

What was found after manual check
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They said: DevSecOps, 
CI/CD Pipelines …sure? ☺

We analyze binaries artefacts and see…

We expect that big vendors use 
SSDLC and CI/CD Pipeline:

Actions

Expectation
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They said: DevSecOps, 
CI/CD Pipelines …sure? ☺

It doesn't look like it was built in CI\CD Pipelines ☺ Looks like a build on a developer workstation

We analyze binaries artefacts and see:

Reality

Developer 
Build libs 

? App 
Markets

App 
Users

MacOS?! This is hardly a CI/CD pipeline* - was changed from real for privacy
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Results: How to make your native libs of 
Android Apps more secure?

1. Conduct bug bounties

2. Monitor known vulnerabilities (classical SCA) and bugs/issues, 
check PoCs for your dependencies. Analyze Silent Vulnerability 
Fixes

3. Update your vulnerable native libs

4. Fuzzing your libraries and your dependencies 

5. Delete service info (build artefacts) from binary files (last name 
of your developers and build paths)
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Next Steps

• Improve commit detection approach (not only using literals), 
use deeper analysis to detect functions with CVE

• Automation to detect CVE fix in functions

• Publish the implemented BSCA system as a web service

• Continue searching for Silent Vulnerability Fix using LLM with 
information from Data-Flow Analysis

• Detect versions of packages from APK (Fresco, exoplayer2, ..)

• Try to automate PoC generation using selective function fuzzing

I am open to any help and ideas
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